1. Solve the differential equation $\frac{\mathrm{d} y}{\mathrm{~d} x}-3 y=x$
to obtain y as a function of x.
(Total 5 marks)
2. (a) Simplify the expression $\frac{(x+3)(x+9)}{x-1}-(3 x-5)$, giving your answer in the form

$$
\begin{equation*}
\frac{a(x+b)(x+c)}{x-1}, \text { where } a, b \text { and } c \text { are integers. } \tag{4}
\end{equation*}
$$

(b) Hence, or otherwise, solve the inequality $\quad \frac{(x+3)(x+9)}{x-1}>3 x-5 \quad$ (4)(Total 8 marks)
3. (a) Find the general solution of the differential equation

$$
\begin{equation*}
3 \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}-\frac{\mathrm{d} y}{\mathrm{~d} x}-2 y=x^{2} \tag{8}
\end{equation*}
$$

(b) Find the particular solution for which, at $x=0, y=2$ and $\frac{\mathrm{d} y}{\mathrm{~d} x}=3$.(6)(Total 14 marks)
4. The diagram above shows the curve C_{1} which has polar equation $\boldsymbol{r}=\boldsymbol{a}(3+2 \cos \boldsymbol{\theta}), 0 \leq \theta<2 \pi$ and the circle C_{2} with equation $\boldsymbol{r}=$ $4 \boldsymbol{a}, 0 \leq \theta<2 \pi$, where a is a positive constant.
(a) Find, in terms of a, the polar coordinates of the points where the curve C_{1} meets the circle C_{2}.(4)

The regions enclosed by the curves C_{1} and C_{2} overlap and this common region R is shaded in the figure.
(b) Find, in terms of a, an exact expression for the area of the
 region R.(8)
(c) In a single diagram, copy the two curves in the diagram above and also sketch the curve C_{3} with polar equation $r=2 a \cos \theta, 0 \leq \theta<2 \pi$ Show clearly the coordinates of the points of intersection of $\mathrm{C}_{1}, \mathrm{C}_{2}$ and C_{3} with the initial line, $\theta=0$.(3)(Total 15 marks)
5. (a) Find, in terms of k, the general solution of the differential equation

$$
\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}+4 \frac{\mathrm{~d} x}{\mathrm{~d} t}+3 x=k t+5, \text { where } k \text { is a constant and } t>0 .(7)
$$

For large values of t, this general solution may be approximated by a linear function.
(b) Given that $k=6$, find the equation of this linear function.(2)(Total 9 marks)
6. (a) Find, in the simplest surd form where appropriate, the exact values of x for which

$$
\frac{x}{2}+3=\left|\frac{4}{x}\right| . \text {.(5) }
$$

(b) Sketch, on the same axes, the line with equation $y=\frac{x}{2}+3$ and the graph of

$$
\begin{equation*}
y=\left|\frac{4}{x}\right|, x \neq 0 . \tag{3}
\end{equation*}
$$

(c) Find the set of values of x for which $\frac{x}{2}+3>\left|\frac{4}{x}\right|$.
(2)(Total 10 marks)
7. (a) Show that the substitution $y=v x$ transforms the differential equation

$$
\begin{equation*}
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{x}{y}+\frac{3 y}{x}, x>0, \quad y>0 \tag{I}
\end{equation*}
$$

into the differential equation $\quad x \frac{\mathrm{~d} v}{\mathrm{~d} x}=2 v+\frac{1}{v}$. (II)
(b) By solving differential equation (II), find a general solution of differential equation (I) in the form $y=\mathrm{f}(x)$.

Given that $y=3$ at $x=1$,
(c)find the particular solution of differential equation (I).(2)
8. The curve C shown in the diagram above has polar equation

$$
r=4(1-\cos \theta), 0 \leq \theta \leq \frac{\pi}{2} .
$$

At the point P on C, the tangent to C is parallel to the line $\theta=\frac{\pi}{2}$.
(a) Show that P has polar coordinates $\left(2, \frac{\pi}{3}\right)$.(5)

The curve C meets the line $\theta=\frac{\pi}{2}$ at the point A. The tangent to C at the initial line at the point N. The finite region R, shown shaded in
 the diagram above, is bounded by the initial line, the line $\theta=\frac{\pi}{2}$, the $\operatorname{arc} A P$ of C and the line $P N$.
(b) Calculate the exact area of R.
9. $\left(x^{2}+1\right) \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=2 y^{2}+(1-2 x) \frac{\mathrm{d} y}{\mathrm{~d} x}$
(a) By differentiating equation (I) with respect to x, show that

$$
\begin{equation*}
\left(x^{2}+1\right) \frac{\mathrm{d}^{3} y}{\mathrm{~d} x^{3}}=(1-4 x) \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+(4 y-2) \frac{\mathrm{d} y}{\mathrm{~d} x} . \tag{3}
\end{equation*}
$$

Given that $y=1$ and $\frac{\mathrm{d} y}{\mathrm{~d} x}=1$ at $x=0$,
(b) find the series solution for y, in ascending powers of x, up to and including the term in x_{3}.(4)
(c) Use your series to estimate the value of y at $x=-0.5$, giving your answer to two decimal places.(1)
10. The point P represents a complex number z on an Argand diagram such that

$$
|z-3|=2|z| .
$$

(a) Show that, as z varies, the locus of P is a circle, and give the coordinates of the centre and the radius of the circle.(5)

The point Q represents a complex number z on an Argand diagram such that

$$
|z+3|=|z-\mathrm{i} \sqrt{ } 3| .
$$

(b) Sketch, on the same Argand diagram, the locus of P and the locus of Q as z varies.(5)
(c) On your diagram shade the region which satisfies

$$
\begin{equation*}
|z-3| \geq 2|z| \text { and }|z+3| \geq|z-\mathrm{i} \sqrt{ } 3| \text {. } \tag{2}
\end{equation*}
$$

11. De Moivre's theorem states that

$$
\begin{equation*}
(\cos \theta+\mathrm{i} \sin \theta)^{n}=\cos n \theta+\mathrm{i} \sin n \theta \text { for } n \in \mathfrak{R} \tag{5}
\end{equation*}
$$

(a) Use induction to prove de Moivre's theorem for $n \in \mathbb{Z}^{+}$.
(b) Show that $\cos 5 \theta=16 \cos ^{5} \theta-20 \cos ^{3} \theta+5 \cos \theta$
(c) Hence show that $2 \cos \frac{\pi}{10}$ is a root of the equation

$$
\begin{equation*}
x^{4}-5 x^{2}+5=0 \tag{3}
\end{equation*}
$$

